Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method
نویسندگان
چکیده
منابع مشابه
The method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases
In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.
متن کاملThe simple boundary element method for transient heat conduction in functionally graded materials
This paper presents a ‘‘simple’’ boundary element method for transient heat conduction in functionally graded materials, which leads to a boundary-only formulation without any domain discretization. For a broad range of functional material variation (quadratic, exponential and trigonometric) of thermal conductivity and specific heat, the non-homogeneous problem can be transformed into the stand...
متن کاملAnalysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method
A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of steady-state and transient heat conduction problems in a continuously nonhomogeneous anisotropic medium. The Laplace transform is used to treat the time dependence of the variables for transient problems. The analyzed domain is covered by small subdomains with a simple geometry. A weak formulation for ...
متن کاملBoundary Element Analysis of Nonlinear Heat Conduction Problem with Point, Line and Distributed Heat Sources Employing Analytical integrations
متن کامل
Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2011
ISSN: 0307-904X
DOI: 10.1016/j.apm.2011.02.039